题目描述
$\sigma_k(n) = \sum_{d | n} d ^ k$
求 $\sum_{i=1}^n\sigma_k(i)$ 的值对 109 取模的结果。
输入格式
第一行两个正整数 n,k 。
输出格式
第一行输出答案。
样例
输入样例
5 2
输出样例
63
数据范围与提示
对于 100% 的数据,1≤n,k≤1077 。
Solution:
本题ZYYS。。。
直接枚举显然不行,我们考虑改为求$n$的某一因子$d$在整个函数中的贡献是多少。
套上数论分块的思想,一个因子$d$对式子的贡献是$\lfloor{\frac{n}{d}}\rfloor\times d^k$。
这样我们需要处理的就是$d^k$,直接$O(n\log k)$快速幂求出每个因子的幂是肯定不行的,因为$n$是$10^7$,直接会T。
那么还是考虑优化,我们发现,每个数都能唯一分解,而在求幂时会有重复计算的质因子幂。于是,我们考虑线筛,这样就可以用每个数的最小质因子幂去算它的幂了,那么整个过程只会对$n\leq 10^7$内的质数进行快速幂,最后复杂度就成了$\sqrt n \log k$,完全可行。
所以最后就只需再$O(n)$扫一遍因子累加贡献求和就好了。
代码:
#include<iostream>
#define il inline
#define ll long long
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)>(b)?(b):(a)) using namespace std;
const int N=1e7,mod=1e9+;
int prime[N+],ans,cnt,n,k,sum[N+];
bool isprime[N+]; il int fast(ll s,ll k){
ll ans=;
while(k){
if(k&)ans=ans*s%mod;
k>>=;
s=s*s%mod;
}
return ans;
} il void init(){
sum[]=;
For(i,,n+) {
if(!isprime[i]) prime[++cnt]=i,sum[i]=fast(i,k);
for(int j=;j<=cnt&&prime[j]*i<=n+;j++){
isprime[prime[j]*i]=;
sum[prime[j]*i]=sum[i]*1ll*sum[prime[j]]%mod;
if(i%prime[j]==)break;
}
}
} int main(){
ios::sync_with_stdio();
cin>>n>>k;
init();
For(i,,n) ans=(ans+1ll*(n/i)*sum[i])%mod;
cout<<ans;
return ;
}