Machine Learning in Action(4) Logistic Regression

时间:2022-09-11 00:00:29

从这节算是开始进入“正规”的机器学习了吧,之所以“正规”因为它开始要建立价值函数(cost function),接着优化价值函数求出权重,然后测试验证。这整套的流程是机器学习必经环节。今天要学习的话题是逻辑回归,逻辑回归也是一种有监督学习方法(supervised machine learning)。逻辑回归一般用来做预测,也可以用来做分类,预测是某个类别^.^!线性回归想比大家都不陌生了,y=kx+b,给定一堆数据点,拟合出k和b的值就行了,下次给定X时,就可以计算出y,这就是回归。而逻辑回归跟这个有点区别,它是一种非线性函数,拟合功能颇为强大,而且它是连续函数,可以对其求导,这点很重要,如果一个函数不可求导,那它在机器学习用起来很麻烦,早期的海维赛德(Heaviside)阶梯函数就因此被sigmoid函数取代,因为可导意味着我们可以很快找到其极值点,这就是优化方法的重要思想之一:利用求导,得到梯度,然后用梯度下降法更新参数。

下面来看看逻辑回归的sigmoid函数,如(图一)所示:

Machine Learning in Action(4) Logistic Regression

(图一)

(图一)中上图是sigmoid函数在定义域[-5,5] 上的形状,而下图是在定义域[-60,60]上的形状,由这两个图可以看出,它比较适合做二类的回归,因为严重两级分化。Sigmoid函数的如(公式一)所示:

Machine Learning in Action(4) Logistic Regression

(公式一)

现在有了二类回归函数模型,就可以把特征映射到这个模型上了,而且sigmoid函数的自变量只有一个Z,假设我们的特征为X=[x0,x1,x2…xn]。令Machine Learning in Action(4) Logistic Regression

,当给定大批的训练样本特征X时,我们只要找到合适的W=[w0,w1,w2…wn]来正确的把每个样本特征X映射到sigmoid函数的两级上,也就是说正确的完成了类别回归就行了,那么以后来个测试样本,只要和权重相乘后,带入sigmoid函数计算出的值就是预测值啦,很简单是吧。那怎么求权重W呢?

要计算W,就要进入优化求解阶段咯,用的方法是梯度下降法或者随机梯度下降法。说到梯度下降,梯度下降一般对什么求梯度呢?梯度是一个函数上升最快的方向,沿着梯度方向我们可以很快找到极值点。我们找什么极值?仔细想想,当然是找训练模型的误差极值,当模型预测值和训练样本给出的正确值之间的误差和最小时,模型参数就是我们要求的。当然误差最小有可能导致过拟合,这个以后再说。我们先建立模型训练误差价值函数(cost function),如(公式二)所示:

Machine Learning in Action(4) Logistic Regression

(公式二)

(公式二)中Y表示训练样本真实值,当J(theta)最小时的所得的theta就是我们要求的模型权重,可以看出J(theta)是个凸函数,得到的最小值也是全局最小。对其求导后得出梯度,如(公式三)所示:

Machine Learning in Action(4) Logistic Regression

(公式三)

由于我们是找极小值,而梯度方向是极大值方向,因此我们取负号,沿着负梯度方向更新参数,如(公式四)所示:

Machine Learning in Action(4) Logistic Regression

(公式四)

按照(公式四)的参数更新方法,当权重不再变化时,我们就宣称找到了极值点,此时的权重也是我们要求的,整个参数更新示意图如(图二)所示:

Machine Learning in Action(4) Logistic Regression

(图二)

原理到此为止逻辑回归基本就说完了,下面进入代码实战阶段:

 from numpy import *

 def loadDataSet():
dataMat = []; labelMat = []
fr = open('testSet.txt')
for line in fr.readlines():
lineArr = line.strip().split()
dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
labelMat.append(int(lineArr[2]))
return dataMat,labelMat def sigmoid(inX):
return 1.0/(1+exp(-inX))

上面两个函数分别是加载训练集和定义sigmoid函数,都比较简单。下面发出梯度下降的代码:

 def gradAscent(dataMatIn, classLabels):
dataMatrix = mat(dataMatIn) #convert to NumPy matrix
labelMat = mat(classLabels).transpose() #convert to NumPy matrix
m,n = shape(dataMatrix)
alpha = 0.001
maxCycles = 500
weights = ones((n,1))
for k in range(maxCycles): #heavy on matrix operations
h = sigmoid(dataMatrix*weights) #matrix mult
error = (labelMat - h) #vector subtraction
weights = weights + alpha * dataMatrix.transpose()* error #matrix mult
return weights

梯度下降输入训练集和对应标签,接着就是迭代跟新参数,计算梯度,然后更新参数,注意倒数第二句就是按照(公式三)和(公式四)来更新参数。

为了直观的看到我们得到的权重是否正确的,我们把权重和样本打印出来,下面是相关打印代码:

 def plotBestFit(weights):
import matplotlib.pyplot as plt
dataMat,labelMat=loadDataSet()
dataArr = array(dataMat)
n = shape(dataArr)[0]
xcord1 = []; ycord1 = []
xcord2 = []; ycord2 = []
for i in range(n):
if int(labelMat[i])== 1:
xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
else:
xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
ax.scatter(xcord2, ycord2, s=30, c='green')
x = arange(-3.0, 3.0, 0.1)
y = (-weights[0]-weights[1]*x)/weights[2]
ax.plot(x, y)
plt.xlabel('X1'); plt.ylabel('X2');
plt.show()

打印的效果图如(图三)所示:

Machine Learning in Action(4) Logistic Regression

(图三)

可以看出效果蛮不错的,小错误是难免的,如果训练集没有错误反而危险,说到这基本就说完了,但是考虑到这个方法对少量样本(几百的)还行,在实际中当遇到10亿数量级时,而且特征维数上千时,这种方法很恐怖,光计算梯度就要消耗大量时间,因此要使用随机梯度下降方法。随机梯度下降算法和梯度下降算法原理一样,只是计算梯度不再使用所有样本,而是使用一个或者一小批来计算梯度,这样可以减少计算代价,虽然权重更新的路径很曲折,但最终也会收敛的,如(图四)所示

Machine Learning in Action(4) Logistic Regression

(图四)

下面也发出随机梯度下降的代码:

 def stocGradAscent1(dataMatrix, classLabels, numIter=150):
m,n = shape(dataMatrix)
weights = ones(n) #initialize to all ones
for j in range(numIter):
dataIndex = range(m)
for i in range(m):
alpha = 4/(1.0+j+i)+0.0001 #apha decreases with iteration, does not
randIndex = int(random.uniform(0,len(dataIndex)))#go to 0 because of the constant
h = sigmoid(sum(dataMatrix[randIndex]*weights))
error = classLabels[randIndex] - h
weights = weights + alpha * error * dataMatrix[randIndex]
del(dataIndex[randIndex])
return weights

最后也给出一个分类的代码,只要把阈值设为0.5,大于0.5划为一类,小于0.5划为另一类就行了,代码如下:

 def classifyVector(inX, weights):
prob = sigmoid(sum(inX*weights))
if prob > 0.5: return 1.0
else: return 0.0

总结:

优点:计算量不高,容易实现,对现实数据也很容易描述

缺点:很容易欠拟合,精度可能也会不高

以上内容来至朋友博客http://blog.csdn.net/marvin521/article/details/9263483

Ps:Logistic Regression是一种很经典很经典的分类方法,建立一个损失函数,套一个优化方法(梯度下降,随机梯度下降,共轭梯度,bfgs等)不断优化得到特征的W

。应用随机梯度优化方法的时候,如果数据属性有缺失的话,可以直接置0就好了,不影响W的优化。记得有位学者的文章详尽对比了Logistic Regression在不同优化方法的Performance,并提供了Matlab的toolbox,在应用中通常要对Logistic Regression的Loss Function加一个L1/L2的正则项约束。Mahout有该算法的并行实现,以前也用过GPU做了下给予共轭梯度的Logistic Regression的实现。

Machine Learning in Action(4) Logistic Regression的更多相关文章

  1. Andrew Ng 的 Machine Learning 课程学习 (week3) Logistic Regression

    这学期一直在跟进 Coursera上的 Machina Learning 公开课, 老师Andrew Ng是coursera的创始人之一,Machine Learning方面的大牛.这门课程对想要了解 ...

  2. machine learning(15) --Regularization:Regularized logistic regression

    Regularization:Regularized logistic regression without regularization 当features很多时会出现overfitting现象,图 ...

  3. [笔记]机器学习(Machine Learning) - 02.逻辑回归(Logistic Regression)

    逻辑回归算法是分类算法,虽然这个算法的名字中出现了"回归",但逻辑回归算法实际上是一种分类算法,我们将它作为分类算法使用.. 分类问题:对于每个样本,判断它属于N个类中的那个类或哪 ...

  4. 机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归

    机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归 关键字:Logistic回归.python.源码解析.测试作者:米仓山下时间:2018- ...

  5. 《Machine Learning in Action》—— Taoye给你讲讲Logistic回归是咋回事

    在手撕机器学习系列文章的上一篇,我们详细讲解了线性回归的问题,并且最后通过梯度下降算法拟合了一条直线,从而使得这条直线尽可能的切合数据样本集,已到达模型损失值最小的目的. 在本篇文章中,我们主要是手撕 ...

  6. 【机器学习实战】Machine Learning in Action 代码 视频 项目案例

    MachineLearning 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远 Machine Learning in Action (机器学习实战) | ApacheCN(apa ...

  7. 学习笔记之机器学习实战 (Machine Learning in Action)

    机器学习实战 (豆瓣) https://book.douban.com/subject/24703171/ 机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中 ...

  8. K近邻 Python实现 机器学习实战(Machine Learning in Action)

    算法原理 K近邻是机器学习中常见的分类方法之间,也是相对最简单的一种分类方法,属于监督学习范畴.其实K近邻并没有显式的学习过程,它的学习过程就是测试过程.K近邻思想很简单:先给你一个训练数据集D,包括 ...

  9. 机器学习实战(Machine Learning in Action)学习笔记————10.奇异值分解(SVD)原理、基于协同过滤的推荐引擎、数据降维

    关键字:SVD.奇异值分解.降维.基于协同过滤的推荐引擎作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harr ...

随机推荐

  1. int型时间字符串转日期

    string re ="201611"; DateTime d1 = DateTime.ParseExact(re, "yyyyMMdd", null);

  2. 拓扑排序(二)之 C++详解

    本章是通过C++实现拓扑排序. 目录 1. 拓扑排序介绍 2. 拓扑排序的算法图解 3. 拓扑排序的代码说明 4. 拓扑排序的完整源码和测试程序 转载请注明出处:http://www.cnblogs. ...

  3. 三维网格形变算法(Laplacian-Based Deformation)

    网格上顶点的Laplace坐标(均匀权重)定义为:,其中di为顶点vi的1环邻域顶点数. 网格Laplace坐标可以用矩阵形式表示:△=LV,其中,那么根据网格的Laplace坐标通过求解稀疏线性方程 ...

  4. Prism定制Region控件

    并不是所有控件都可以被用作Region了吗?我们将Gird块的代码变成这样: <Grid> <ContentControl prism:RegionManager.RegionNam ...

  5. sum&lpar;case when ct&period;tradeTotal &gt&semi;&equals; 0 then 1 else 0 end&rpar;的意思

    String hql = "select new com.ks.admin.report.dto.ReportMonthWithDrawalDto(" + "count( ...

  6. 【Spring】25、Spring代理。 BeanNameAutoProxyCreator 与 ProxyFactoryBean

    一般我们可以使用ProxyBeanFactory,并配置proxyInterfaces,target和interceptorNames实现,但如果需要代理的bean很多,无疑会对spring配置文件的 ...

  7. 笨方法学python之转义字符

    ASCII码值(十进制) \a 响铃(BEL) 007 //响铃(有声音) \b 退格(BS) 008 //使当前的输出位置退一格,即输出的起始位置左移一位 */ \f 换页(FF) 012 //只有 ...

  8. POJ 2349 Arctic Network(最小生成树中第s大的边)

    题目链接:http://poj.org/problem?id=2349 Description The Department of National Defence (DND) wishes to c ...

  9. 利用OpenLayers创建wkt字符串

    var polygon = OpenLayers.Geometry.Polygon.createRegularPolygon(new OpenLayers.Geometry.Point(6, 49), ...

  10. Prometheus Node&lowbar;exporter 之 Basic CPU &sol; Mem Graph

    1. CPU Basic cpu 的基本信息 /proc/stat type: GraphUnit: shortBusy System: cpu 处于核心态的占比 metrics: sum by (i ...