Go语言性能剖析利器--pprof实战

时间:2022-12-15 11:15:03

作者:耿宗杰

前言

关于pprof的文章在网上已是汗牛充栋,却是千篇一律的命令介绍,鲜有真正实操的,本文将参考Go社区资料,结合自己的经验,实战Go程序的性能分析与优化过程。

优化思路

首先说一下性能优化的一般思路。系统性能的分析优化,一定是从大到小的步骤来进行的,即从业务架构的优化,到系统架构的优化,再到系统模块间的优化,最后到代码编写层面的优化。业务架构的优化是最具性价比的,技术难度相对较小,却可以带来大幅的性能提升。比如通过和同事或外部门沟通,减少了一些接口调用或者去掉了不必要的复杂的业务逻辑,可以轻松提升整个系统的性能。系统架构的优化,比如加入缓存,由http改进为rpc等,也可以在少量投入下带来较大的性能提升。最后是程序代码级别的性能优化,这又分为两方面,一是合格的数据结构与使用,二才是在此基础上的性能剖析。比如在Go语言中使用slice这种方便的数据结构时,尽可能提前申请足够的内存防止append超过容量时的内存申请和数据拷贝;使用并发保护时尽量由RWMutex 代替mutex,甚至在极高并发场景下使用更细粒度的原子操作代替锁等等。

优化实践

下面进入正文,待优化程序是社区中一个例子,代码有点长,实现的算法是著名的计算机科学家Tarjan的求图的强连通分量算法,关于这个算法的思想请自行google(就别自行百度了~)。以下为实操过程(会有那么一丢丢长。。。):

初始版本代码 havlak1.go:

// Go from multi-language-benchmark/src/havlak/go_pro// Copyright 2011 Google Inc.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////     http://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.// Test Program for the Havlak loop finder.//// This program constructs a fairly large control flow// graph and performs loop recognition. This is the Go// version.//package mainimport (   "flag"   "fmt"   "log"   "os"   "runtime/pprof")type BasicBlock struct {   Name     int   InEdges  []*BasicBlock   OutEdges []*BasicBlock}func NewBasicBlock(name int) *BasicBlock {   return &BasicBlock{Name: name}}func (bb *BasicBlock) Dump() {   fmt.Printf("BB#%06d:", bb.Name)   if len(bb.InEdges) > 0 {      fmt.Printf(" in :")      for _, iter := range bb.InEdges {         fmt.Printf(" BB#%06d", iter.Name)      }   }   if len(bb.OutEdges) > 0 {      fmt.Print(" out:")      for _, iter := range bb.OutEdges {         fmt.Printf(" BB#%06d", iter.Name)      }   }   fmt.Printf("\n")}func (bb *BasicBlock) NumPred() int {   return len(bb.InEdges)}func (bb *BasicBlock) NumSucc() int {   return len(bb.OutEdges)}func (bb *BasicBlock) AddInEdge(from *BasicBlock) {   bb.InEdges = append(bb.InEdges, from)}func (bb *BasicBlock) AddOutEdge(to *BasicBlock) {   bb.OutEdges = append(bb.OutEdges, to)}//-----------------------------------------------------------type CFG struct {   Blocks []*BasicBlock   Start  *BasicBlock}func NewCFG() *CFG {   return &CFG{}}func (cfg *CFG) NumNodes() int {   return len(cfg.Blocks)}func (cfg *CFG) CreateNode(node int) *BasicBlock {   if node < len(cfg.Blocks) {      return cfg.Blocks[node]   }   if node != len(cfg.Blocks) {      println("oops", node, len(cfg.Blocks))      panic("wtf")   }   bblock := NewBasicBlock(node)   cfg.Blocks = append(cfg.Blocks, bblock)   if len(cfg.Blocks) == 1 {      cfg.Start = bblock   }   return bblock}func (cfg *CFG) Dump() {   for _, n := range cfg.Blocks {      n.Dump()   }}//-----------------------------------------------------------type BasicBlockEdge struct {   Dst *BasicBlock   Src *BasicBlock}func NewBasicBlockEdge(cfg *CFG, from int, to int) *BasicBlockEdge {   self := new(BasicBlockEdge)   self.Src = cfg.CreateNode(from)   self.Dst = cfg.CreateNode(to)   self.Src.AddOutEdge(self.Dst)   self.Dst.AddInEdge(self.Src)   return self}//-----------------------------------------------------------// Basic Blocks and Loops are being classified as regular, irreducible,// and so on. This enum contains a symbolic name for all these classifications//const (   _             = iota // Go has an interesting iota concept   bbTop                // uninitialized   bbNonHeader          // a regular BB   bbReducible          // reducible loop   bbSelf               // single BB loop   bbIrreducible        // irreducible loop   bbDead               // a dead BB   bbLast               // sentinel)// UnionFindNode is used in the Union/Find algorithm to collapse// complete loops into a single node. These nodes and the// corresponding functionality are implemented with this class//type UnionFindNode struct {   parent    *UnionFindNode   bb        *BasicBlock   loop      *SimpleLoop   dfsNumber int}// Init explicitly initializes UnionFind nodes.//func (u *UnionFindNode) Init(bb *BasicBlock, dfsNumber int) {   u.parent = u   u.bb = bb   u.dfsNumber = dfsNumber   u.loop = nil}// FindSet implements the Find part of the Union/Find Algorithm//// Implemented with Path Compression (inner loops are only// visited and collapsed once, however, deep nests would still// result in significant traversals).//func (u *UnionFindNode) FindSet() *UnionFindNode {   var nodeList []*UnionFindNode   node := u   for ; node != node.parent; node = node.parent {      if node.parent != node.parent.parent {         nodeList = append(nodeList, node)      }   }   // Path Compression, all nodes' parents point to the 1st level parent.   for _, ll := range nodeList {      ll.parent = node.parent   }   return node}// Union relies on path compression.//func (u *UnionFindNode) Union(B *UnionFindNode) {   u.parent = B}// Constants//// Marker for uninitialized nodes.const unvisited = -1// Safeguard against pathological algorithm behavior.const maxNonBackPreds = 32 * 1024// IsAncestor//// As described in the paper, determine whether a node 'w' is a// "true" ancestor for node 'v'.//// Dominance can be tested quickly using a pre-order trick// for depth-first spanning trees. This is why DFS is the first// thing we run below.//// Go comment: Parameters can be written as w,v int, inlike in C, where//   each parameter needs its own type.//func isAncestor(w, v int, last []int) bool {   return ((w <= v) && (v <= last[w]))}// listContainsNode//// Check whether a list contains a specific element. //func listContainsNode(l []*UnionFindNode, u *UnionFindNode) bool {   for _, ll := range l {      if ll == u {         return true      }   }   return false}// DFS - Depth-First-Search and node numbering.//func DFS(currentNode *BasicBlock, nodes []*UnionFindNode, number map[*BasicBlock]int, last []int, current int) int {   nodes[current].Init(currentNode, current)   number[currentNode] = current   lastid := current   for _, target := range currentNode.OutEdges {      if number[target] == unvisited {         lastid = DFS(target, nodes, number, last, lastid+1)      }   }   last[number[currentNode]] = lastid   return lastid}// FindLoops//// Find loops and build loop forest using Havlak's algorithm, which// is derived from Tarjan. Variable names and step numbering has// been chosen to be identical to the nomenclature in Havlak's// paper (which, in turn, is similar to the one used by Tarjan).//func FindLoops(cfgraph *CFG, lsgraph *LSG) {   if cfgraph.Start == nil {      return   }   size := cfgraph.NumNodes()   nonBackPreds := make([]map[int]bool, size)   backPreds := make([][]int, size)   number := make(map[*BasicBlock]int)   header := make([]int, size, size)   types := make([]int, size, size)   last := make([]int, size, size)   nodes := make([]*UnionFindNode, size, size)   for i := 0; i < size; i++ {      nodes[i] = new(UnionFindNode)   }   // Step a:   //   - initialize all nodes as unvisited.   //   - depth-first traversal and numbering.   //   - unreached BB's are marked as dead.   //   for i, bb := range cfgraph.Blocks {      number[bb] = unvisited      nonBackPreds[i] = make(map[int]bool)   }   DFS(cfgraph.Start, nodes, number, last, 0)   // Step b:   //   - iterate over all nodes.   //   //   A backedge comes from a descendant in the DFS tree, and non-backedges   //   from non-descendants (following Tarjan).   //   //   - check incoming edges 'v' and add them to either   //     - the list of backedges (backPreds) or   //     - the list of non-backedges (nonBackPreds)   //   for w := 0; w < size; w++ {      header[w] = 0      types[w] = bbNonHeader      nodeW := nodes[w].bb      if nodeW == nil {         types[w] = bbDead         continue // dead BB      }      if nodeW.NumPred() > 0 {         for _, nodeV := range nodeW.InEdges {            v := number[nodeV]            if v == unvisited {               continue // dead node            }            if isAncestor(w, v, last) {               backPreds[w] = append(backPreds[w], v)            } else {               nonBackPreds[w][v] = true            }         }      }   }   // Start node is root of all other loops.   header[0] = 0   // Step c:   //   // The outer loop, unchanged from Tarjan. It does nothing except   // for those nodes which are the destinations of backedges.   // For a header node w, we chase backward from the sources of the   // backedges adding nodes to the set P, representing the body of   // the loop headed by w.   //   // By running through the nodes in reverse of the DFST preorder,   // we ensure that inner loop headers will be processed before the   // headers for surrounding loops.   //   for w := size - 1; w >= 0; w-- {      // this is 'P' in Havlak's paper      var nodePool []*UnionFindNode      nodeW := nodes[w].bb      if nodeW == nil {         continue // dead BB      }      // Step d:      for _, v := range backPreds[w] {         if v != w {            nodePool = append(nodePool, nodes[v].FindSet())         } else {            types[w] = bbSelf         }      }      // Copy nodePool to workList.      //      workList := append([]*UnionFindNode(nil), nodePool...)      if len(nodePool) != 0 {         types[w] = bbReducible      }      // work the list...      //      for len(workList) > 0 {         x := workList[0]         workList = workList[1:]         // Step e:         //         // Step e represents the main difference from Tarjan's method.         // Chasing upwards from the sources of a node w's backedges. If         // there is a node y' that is not a descendant of w, w is marked         // the header of an irreducible loop, there is another entry         // into this loop that avoids w.         //         // The algorithm has degenerated. Break and         // return in this case.         //         nonBackSize := len(nonBackPreds[x.dfsNumber])         if nonBackSize > maxNonBackPreds {            return         }         for iter := range nonBackPreds[x.dfsNumber] {            y := nodes[iter]            ydash := y.FindSet()            if !isAncestor(w, ydash.dfsNumber, last) {               types[w] = bbIrreducible               nonBackPreds[w][ydash.dfsNumber] = true            } else {               if ydash.dfsNumber != w {                  if !listContainsNode(nodePool, ydash) {                     workList = append(workList, ydash)                     nodePool = append(nodePool, ydash)                  }               }            }         }      }      // Collapse/Unionize nodes in a SCC to a single node      // For every SCC found, create a loop descriptor and link it in.      //      if (len(nodePool) > 0) || (types[w] == bbSelf) {         loop := lsgraph.NewLoop()         loop.SetHeader(nodeW)         if types[w] != bbIrreducible {            loop.IsReducible = true         }         // At this point, one can set attributes to the loop, such as:         //         // the bottom node:         //    iter  = backPreds[w].begin();         //    loop bottom is: nodes[iter].node);         //         // the number of backedges:         //    backPreds[w].size()         //         // whether this loop is reducible:         //    type[w] != BasicBlockClass.bbIrreducible         //         nodes[w].loop = loop         for _, node := range nodePool {            // Add nodes to loop descriptor.            header[node.dfsNumber] = w            node.Union(nodes[w])            // Nested loops are not added, but linked together.            if node.loop != nil {               node.loop.Parent = loop            } else {               loop.AddNode(node.bb)            }         }         lsgraph.AddLoop(loop)      } // nodePool.size   } // Step c}// External entry point.func FindHavlakLoops(cfgraph *CFG, lsgraph *LSG) int {   FindLoops(cfgraph, lsgraph)   return lsgraph.NumLoops()}//======================================================// Scaffold Code//======================================================// Basic representation of loops, a loop has an entry point,// one or more exit edges, a set of basic blocks, and potentially// an outer loop - a "parent" loop.//// Furthermore, it can have any set of properties, e.g.,// it can be an irreducible loop, have control flow, be// a candidate for transformations, and what not.//type SimpleLoop struct {   // No set, use map to bool   basicBlocks map[*BasicBlock]bool   Children    map[*SimpleLoop]bool   Parent      *SimpleLoop   header      *BasicBlock   IsRoot       bool   IsReducible  bool   Counter      int   NestingLevel int   DepthLevel   int}func (loop *SimpleLoop) AddNode(bb *BasicBlock) {   loop.basicBlocks[bb] = true}func (loop *SimpleLoop) AddChildLoop(child *SimpleLoop) {   loop.Children[child] = true}func (loop *SimpleLoop) Dump(indent int) {   for i := 0; i < indent; i++ {      fmt.Printf("  ")   }   // No ? operator ?   fmt.Printf("loop-%d nest: %d depth %d ",      loop.Counter, loop.NestingLevel, loop.DepthLevel)   if !loop.IsReducible {      fmt.Printf("(Irreducible) ")   }   // must have > 0   if len(loop.Children) > 0 {      fmt.Printf("Children: ")      for ll := range loop.Children {         fmt.Printf("loop-%d", ll.Counter)      }   }   if len(loop.basicBlocks) > 0 {      fmt.Printf("(")      for bb := range loop.basicBlocks {         fmt.Printf("BB#%06d ", bb.Name)         if loop.header == bb {            fmt.Printf("*")         }      }      fmt.Printf("\b)")   }   fmt.Printf("\n")}func (loop *SimpleLoop) SetParent(parent *SimpleLoop) {   loop.Parent = parent   loop.Parent.AddChildLoop(loop)}func (loop *SimpleLoop) SetHeader(bb *BasicBlock) {   loop.AddNode(bb)   loop.header = bb}//------------------------------------// Helper (No templates or such)//func max(x, y int) int {   if x > y {      return x   }   return y}// LoopStructureGraph//// Maintain loop structure for a given CFG.//// Two values are maintained for this loop graph, depth, and nesting level.// For example://// loop        nesting level    depth//----------------------------------------// loop-0      2                0//   loop-1    1                1//   loop-3    1                1//     loop-2  0                2//var loopCounter = 0type LSG struct {   root  *SimpleLoop   loops []*SimpleLoop}func NewLSG() *LSG {   lsg := new(LSG)   lsg.root = lsg.NewLoop()   lsg.root.NestingLevel = 0   return lsg}func (lsg *LSG) NewLoop() *SimpleLoop {   loop := new(SimpleLoop)   loop.basicBlocks = make(map[*BasicBlock]bool)   loop.Children = make(map[*SimpleLoop]bool)   loop.Parent = nil   loop.header = nil   loop.Counter = loopCounter   loopCounter++   return loop}func (lsg *LSG) AddLoop(loop *SimpleLoop) {   lsg.loops = append(lsg.loops, loop)}func (lsg *LSG) Dump() {   lsg.dump(lsg.root, 0)}func (lsg *LSG) dump(loop *SimpleLoop, indent int) {   loop.Dump(indent)   for ll := range loop.Children {      lsg.dump(ll, indent+1)   }}func (lsg *LSG) CalculateNestingLevel() {   for _, sl := range lsg.loops {      if sl.IsRoot {         continue      }      if sl.Parent == nil {         sl.SetParent(lsg.root)      }   }   lsg.calculateNestingLevel(lsg.root, 0)}func (lsg *LSG) calculateNestingLevel(loop *SimpleLoop, depth int) {   loop.DepthLevel = depth   for ll := range loop.Children {      lsg.calculateNestingLevel(ll, depth+1)      ll.NestingLevel = max(loop.NestingLevel, ll.NestingLevel+1)   }}func (lsg *LSG) NumLoops() int {   return len(lsg.loops)}func (lsg *LSG) Root() *SimpleLoop {   return lsg.root}//======================================================// Testing Code//======================================================func buildDiamond(cfgraph *CFG, start int) int {   bb0 := start   NewBasicBlockEdge(cfgraph, bb0, bb0+1)   NewBasicBlockEdge(cfgraph, bb0, bb0+2)   NewBasicBlockEdge(cfgraph, bb0+1, bb0+3)   NewBasicBlockEdge(cfgraph, bb0+2, bb0+3)   return bb0 + 3}func buildConnect(cfgraph *CFG, start int, end int) {   NewBasicBlockEdge(cfgraph, start, end)}func buildStraight(cfgraph *CFG, start int, n int) int {   for i := 0; i < n; i++ {      buildConnect(cfgraph, start+i, start+i+1)   }   return start + n}func buildBaseLoop(cfgraph *CFG, from int) int {   header := buildStraight(cfgraph, from, 1)   diamond1 := buildDiamond(cfgraph, header)   d11 := buildStraight(cfgraph, diamond1, 1)   diamond2 := buildDiamond(cfgraph, d11)   footer := buildStraight(cfgraph, diamond2, 1)   buildConnect(cfgraph, diamond2, d11)   buildConnect(cfgraph, diamond1, header)   buildConnect(cfgraph, footer, from)   footer = buildStraight(cfgraph, footer, 1)   return footer}var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to this file")func main() {   flag.Parse()   if *cpuprofile != "" {      f, err := os.Create(*cpuprofile)      if err != nil {         log.Fatal(err)      }      pprof.StartCPUProfile(f)      defer pprof.StopCPUProfile()   }   lsgraph := NewLSG()   cfgraph := NewCFG()   cfgraph.CreateNode(0) // top   cfgraph.CreateNode(1) // bottom   NewBasicBlockEdge(cfgraph, 0, 2)   for dummyloop := 0; dummyloop < 15000; dummyloop++ {      FindHavlakLoops(cfgraph, NewLSG())   }   n := 2   for parlooptrees := 0; parlooptrees < 10; parlooptrees++ {      cfgraph.CreateNode(n + 1)      buildConnect(cfgraph, 2, n+1)      n = n + 1      for i := 0; i < 100; i++ {         top := n         n = buildStraight(cfgraph, n, 1)         for j := 0; j < 25; j++ {            n = buildBaseLoop(cfgraph, n)         }         bottom := buildStraight(cfgraph, n, 1)         buildConnect(cfgraph, n, top)         n = bottom      }      buildConnect(cfgraph, n, 1)   }   FindHavlakLoops(cfgraph, lsgraph)   for i := 0; i < 50; i++ {      FindHavlakLoops(cfgraph, NewLSG())   }   fmt.Printf("# of loops: %d (including 1 artificial root node)\n", lsgraph.NumLoops())   lsgraph.CalculateNestingLevel()}

我们借助macbook系统上的time命令来打印程序运行的时间(内核态、用户态、总时间):

编译后运行程序:

Go语言性能剖析利器--pprof实战