1.基本字段类型:primitive_data
数值类型: int、bigint、float、double、DECIMAL
字符串:string
布尔类型:true、false #生产用1/0代替
时间类型:date、TIMESTAMP 等 #生产用字符串代替,如:19010101010101
2.数组类型:arrary_data
存放相同类型的数据集合
#创建一张包含array字段的表,array字段的分割符采用的是逗号
create table hive_array(
name string,
work_locations array<string>
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
COLLECTION ITEMS TERMINATED BY ',';
#加载数据
load data local inpath '/home/hadoop/data/hive_array.txt' overwrite into table hive_array
#直接查询
hive> select * from hive_array;
OK
ruoze ["shanghai","hangzhou","beji"]
jepson ["hangzhou","wuhan","shenzheng"]
Time taken: 0.283 seconds, Fetched: 2 row(s)
#查询数组中的某个字段包含某个元素
select * from hive_array where array_contains(work_locations,"shanghai");
#查询数组具体某个下标的结果
select name,work_locations[2] from hive_array;
#查询数组的大小
select name,size(work_locations) from hive_array;
3 映射集合类型:map_data
存放相同类型的k-v键值对集合
#创建一张包含map类型字段的表,map集合元分割符#,键值对的分隔符:
create table hive_map(
id int,
name string,
members map<string,string>,
age int
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
COLLECTION ITEMS TERMINATED BY '#'
MAP KEYS TERMINATED BY ':';
#加载数据
load data local inpath '/home/hadoop/data/hive_map.txt'
overwrite into table hive_map;
#直接查询
hive> select * from hive_map;
OK
1 zhansan {"father":"xiaoming","mother":"xiaohuang","brother":"xiaoxu"} 28
2 lis {"father":"mayun","mother":"huangyi","brother":"guanyu"} 22
3 wangwu {"father":"wangjianlin","mother":"ruhua","sister":"jianting"} 29
4 mayun {"father":"mayongzhen","mother":"angelababy"} 26
#查询某个键的值
select name,members["father"] from hive_map;
#查询map字段的所有的key,所有的valuse。
select map_keys(members) from hive_map;
select map_values(members) from hive_map;
#查询map集合大小
select size(members) from hive_map;
4 结构体类型:struct-data
可存放不同类型的数据的集合
#创建一张包含struct类型字段的表,struct有由string和int两种类型数据组成,分割符为:
create table hive_struct(
ip string,
userinfo struct<name:string,age:int>
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '#'
COLLECTION ITEMS TERMINATED BY ':';
#加载数据
load data local inpath '/home/hadoop/data/hive_struct.txt'
overwrite into table hive_struct;
#直接查询
hive> select * from hive_struct;
OK
192.168.1.1 {"name":"zhangsan","age":40}
192.168.1.2 {"name":"lisi","age":50}
192.168.1.3 {"name":"wangwu","age":60}
192.168.1.4 {"name":"zhaoliu","age":70}
Time taken: 0.206 seconds, Fetched: 4 row(s)
#查询结构体某个子节点信息
select ip,, from hive_struct;
注意:非基本类型在生产中会被用到,至于对比基本类型性能如何,不是特别重要,因为最终都是由行式存储转为列式存储的大宽表,供生产计算和查询的(sql)。