题目链接:http://poj.org/problem?id=1556
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
const int maxn = ;
const int maxe = ;
const int INF = 0x3f3f3f;
const double eps = 1e-;
const double PI = acos(-1.0); struct Point{
double x,y;
Point(double x=, double y=) : x(x),y(y){ } //构造函数
};
typedef Point Vector; Vector operator + (Vector A , Vector B){return Vector(A.x+B.x,A.y+B.y);}
Vector operator - (Vector A , Vector B){return Vector(A.x-B.x,A.y-B.y);}
Vector operator * (Vector A , double p){return Vector(A.x*p,A.y*p);}
Vector operator / (Vector A , double p){return Vector(A.x/p,A.y/p);} bool operator < (const Point& a,const Point& b){
return a.x < b.x ||( a.x == b.x && a.y < b.y);
} int dcmp(double x){
if(fabs(x) < eps) return ;
else return x < ? - : ;
}
bool operator == (const Point& a, const Point& b){
return dcmp(a.x - b.x) == && dcmp(a.y - b.y) == ;
} ///向量(x,y)的极角用atan2(y,x);
double Dot(Vector A, Vector B){ return A.x*B.x + A.y*B.y; }
double Length(Vector A) { return sqrt(Dot(A,A)); }
double Angle(Vector A, Vector B) { return acos(Dot(A,B) / Length(A) / Length(B)); } double Cross(Vector A, Vector B) { return A.x*B.y - A.y * B.x; }
double Area2(Point A,Point B,Point C) { return Cross(B-A,C-A); } bool SegmentIntersection(Point a1, Point a2, Point b1, Point b2) {
bool flag = max(a1.x, a2.x) >= min(b1.x, b2.x) && max(b1.x, b2.x) >= min(a1.x, a2.x) &&
max(a1.y, a2.y) >= min(b1.y, b2.y) && max(b1.y, b2.y) >= min(a1.y, a2.y);
double c1 = Cross(a2-a1,b1-a1), c2 = Cross(a2-a1,b2-a1),
c3 = Cross(b2-b1,a1-b1), c4 = Cross(b2-b1,a2-b1);
return flag && dcmp(c1) * dcmp(c2) < && dcmp(c3) * dcmp(c4) < ;
} bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2){
double c1 = Cross(a2-a1,b1-a1), c2 = Cross(a2-a1,b2-a1),
c3 = Cross(b2-b1,a1-b1), c4 = Cross(b2-b1,a2-b1);
return dcmp(c1) * dcmp(c2) < && dcmp(c3) * dcmp(c4) < ;
} struct Edge{
int u,v;
double w;
int next;
void assign(int u_,int v_,double w_,int next_){
u = u_; v = v_; w = w_; next = next_;
}
bool operator < (const Edge& r) const{
return w > r.w;
}
}edges[maxe]; struct Dijkstra{
int s,t;
int head[maxn];
int cnt;
double d[maxn]; void addedge(int u,int v,double w){
edges[cnt].assign(u,v,w,head[u]);
head[u] = cnt++;
} void init(int s_,int t_){
s = s_; t = t_;
cnt = ;
memset(head,-,sizeof(head));
} double dijkstra(){
priority_queue<Edge> Q;
while(!Q.empty()) Q.pop();
for(int i=;i<=maxn;i++) d[i] = INF;
bool vis[maxn];
memset(vis,,sizeof(vis));
Edge edge = {s,,};
Q.push(edge); d[s] = ;
while(!Q.empty()){
Edge e = Q.top() ; Q.pop() ;
int u = e.u;
if(vis[u]) continue;
vis[u] = true;
for(int i=head[u];i!=-;i=edges[i].next){
int v = edges[i].v;
if( d[v] > d[u] + edges[i].w){
d[v] = d[u] + edges[i].w;
Edge edge = {v,,d[v]};
Q.push(edge);
}
}
}
return d[t];
}
}; /************************分割线****************************/ Point P[maxn][];
int n;
Dijkstra solver;
int main()
{
//freopen("E:\\acm\\input.txt","r",stdin); while(cin>>n && n != -){
solver.init(,*n+);
P[][] =Point(,); P[n+][] =Point(,);
for(int i=;i<=n;i++){
double x,y;
scanf("%lf",&x);
for(int j=;j<=;j++){
scanf("%lf",&y);
P[i][j]=Point(x,y);
}
} for(int i=;i<=n;i++){
if(i==){
for(int j=i+;j<=n;j++)
for(int k=;k<=;k++){
int flag = true;
for(int m=;m<=j-;m++){
Point a1=P[m][],a2=P[m][],b1=P[m][],b2=P[m][];
if(!SegmentIntersection(P[][],P[j][k],a1,a2) && !SegmentIntersection(P[][],P[j][k],b1,b2)){
flag = false; break;
}
}
if(flag){
solver.addedge(,*j+k-,Length(P[][]-P[j][k]));
}
}
int flag = true;
for(int m=;m<=n;m++){
Point a1=P[m][],a2=P[m][],b1=P[m][],b2=P[m][];
if(!SegmentIntersection(P[][],P[n+][],a1,a2) && !SegmentIntersection(P[][],P[n+][],b1,b2)){
flag = false; break;
}
}
if(flag){
solver.addedge(,*n+,Length(P[][]-P[n+][]));
} }
else{
for(int h=;h<=;h++){ //确定点P[i][h]
for(int j=i+;j<=n;j++)
for(int k=;k<=;k++){ //确定点p[j][k];
int flag = true;
for(int m=i+;m<=j-;m++){
Point a1=P[m][],a2=P[m][],b1=P[m][],b2=P[m][];
if(!SegmentIntersection(P[i][h],P[j][k],a1,a2)&&!SegmentIntersection(P[i][h],P[j][k],b1,b2)){
flag = false; break;
}
}
if(flag){
solver.addedge(*i+h-,*j+k-,Length(P[i][h]-P[j][k]));
}
}
int flag = true;
for(int m=i+;m<=n;m++){
Point a1=P[m][],a2=P[m][],b1=P[m][],b2=P[m][];
if(!SegmentIntersection(P[i][h],P[n+][],a1,a2)&&!SegmentIntersection(P[i][h],P[n+][],b1,b2)){
flag = false; break;
}
}
if(flag){
solver.addedge(*i+h-,*n+,Length(P[i][h]-P[n+][]));
}
}
}
}
printf("%.2f\n",solver.dijkstra());
}
}