Codeforce 613 A. Peter and Snow Blower 解析(思維、幾何)
今天我們來看看CF613A
題目連結
題目
給你一個點\(P\)和\(n\)個點形成的多邊形(照順或逆時針順序給),求這個多邊形繞著\(P\)轉最後可以造成的面積。(有關正式的"旋轉"定義請看原題)
前言
儲存點的座標時沒想過要用\(pair<long\ long,long\ long>\),結果debug超久
想法
首先要注意到:由於題目的旋轉的定義是把每個點都對於點\(P\)去做旋轉,所以最後的圖形一定是兩個同心圓,而面積就是兩個圓中間的面積,而我們只需要維護最長的半徑和最短的半徑就好。
由於題目是按照順序給多邊形的點,所以我們可以把每條邊單獨拿出來考慮和\(P\)點的最短和最長距離。
如上圖所示,想要判斷點\(P\)到線段\(\overline{SE}\)的最短距離線段是否在線段\(\overline{SE}\)上,我們只需要判斷\(\overrightarrow{PM}\)是否被\(\overrightarrow{PS},\overrightarrow{PE}\)所包住,而其中一種方法就是利用外積(叉積、cross product):
如果\(\overrightarrow{PM}\)是被包住的,那麼\(sgn(\overrightarrow{PM}\times\overrightarrow{PS})=-sgn(\overrightarrow{PM}\times\overrightarrow{PE})\)
反之如果\(sgn(\overrightarrow{PM}\times\overrightarrow{PS})=sgn(\overrightarrow{PM}\times\overrightarrow{PE})\),那麼代表沒有被包住。以上是利用了外積的性質:\(\overrightarrow{AB}\times\overrightarrow{CD}=-\overrightarrow{CD}\times\overrightarrow{AB}\)對於任何向量\(\overrightarrow{AB},\overrightarrow{CD}\)。
而要計算最短距離,我們有兩種方法:
- 利用內積是投影長度的相乘的性質,我們把線段的法向量和\(\overrightarrow{PE}\)作內積,再除以法向量的長度,就是最短距離。
- 利用外積的絕對值是向量們所展出的四邊形面積,且等於底乘以高,\(|\overrightarrow{PS}\times\overrightarrow{PE}|/|\overrightarrow{SE}|\)就是最短距離。
而透過觀察可以發現,\(P\)點到線段的長度,不是最短距離,那就是端點。有了以上資訊,我們就可以寫了。
程式碼:
const int _n=1e5+10;
int t,n,m;
PII p,prev,ps[_n];
db minn=1e9,maxx=-1e9,pi=acos(-1);
bool sgn(db x){
return x>=0.0?0:1;
}
db cp(PII u,PII v){
return (db)(u.fi*v.se-u.se*v.fi);
}
db len(PII u){
return sqrt(u.fi*u.fi+u.se*u.se);
}
void f(PII x,PII y){
PII tt2={y.fi-p.fi,y.se-p.se},tt3={x.fi-p.fi,x.se-p.se},tt1={-(tt3.se-tt2.se),tt3.fi-tt2.fi};
db res1=len(tt2),res2=len(tt3),res3=abs((db)(tt1.fi*tt2.fi+tt1.se*tt2.se))/len(tt1);
bool z=1;if(sgn(cp(tt1,tt2))==sgn(cp(tt1,tt3)))z=0;
if(z){
minn=min(minn,min(res1,min(res2,res3)));
maxx=max(maxx,max(res1,max(res2,res3)));
}else{
minn=min(minn,min(res1,res2));
maxx=max(maxx,max(res1,res2));
}
}
main(void) {ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
//這邊的PII必須是pair<ll,ll>
cin>>n>>p.fi>>p.se;rep(i,0,n)cin>>ps[i].fi>>ps[i].se; prev=ps[0];
rep(i,1,n)f(prev,ps[i]),prev=ps[i];
f(prev,ps[0]);
cout<<setprecision(20)<<pi*(maxx*maxx-minn*minn)<<'\n';
return 0;
}
標頭、模板請點Submission看
Submission