BZOJ3295 [Cqoi2011]动态逆序对

时间:2023-03-09 02:19:03
BZOJ3295 [Cqoi2011]动态逆序对

本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。

本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!

Description

对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数。给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序对数。

Input

输入第一行包含两个整数nm,即初始元素的个数和删除的元素个数。以下n行每行包含一个1到n之间的正整数,即初始排列。以下m行每行一个正整数,依次为每次删除的元素。

Output

输出包含m行,依次为删除每个元素之前,逆序对的个数。

Sample Input

5 4
1
5
3
4
2
5
1
4
2

Sample Output

5
2
2
1

样例解释
(1,5,3,4,2)(1,3,4,2)(3,4,2)(3,2)(3)。

HINT

N<=100000 M<=50000

正解:CDQ分治
解题报告:
  CDQ分治裸题。其实也是树套树裸题,那么拿来当CDQ练手吧。
  考虑把删除变成倒着插入,那么我给每个坐标一个权值t,表示插入时间。那么第一个删除的t坐标当然是n,表示最后一个插入。然后为了方便,我们把未被删除的结点的t坐标从左往右设为1、2、3...
  考虑问题转换成了求对于(t0,x0,y0)满足t<t0,x<x0,y>y0的(t,x,y)的个数,这样就变成了三维偏序的裸题了。细节上有必要再说一下:
  首先CDQ分治之前按t排序,保证t已经有序,在每次分治内部,按x排序,正着扫整个区间的时候,对于[mid+1,r]的区间就在树状数组上查询大于他的y的值的数量;倒着扫,对于[mid+1,r]的区间就在树状数组上查询小于他的y的值的数量。因为左边的所有元素对于右边的所有元素而言,是可以肯定t要小一些的,所以CDQ分治就可以巧妙地解决三维偏序的问题。之后在递归处理左边右边就可以了,同样的做法。
  ps:我开始T了两发,犯的是写CDQ分治的常见错误,就是在分治里面清空了数组,事实上只要清除刚才打上去的标记就可以了,无需清空。
 //It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
const int inf = (<<);
const int MAXN = ;
int n,m,c[MAXN],match[MAXN],ans[MAXN];
LL Ans;
struct node{
int x,y,t;
int flag;
}a[MAXN],b[MAXN];
inline bool cmpx(node q,node qq){ if(q.x==qq.x) return q.y<qq.y; return q.x<qq.x; }
inline bool cmpt(node q,node qq){ return q.t<qq.t; }
inline void add(int x,int val){ while(x<=n) c[x]+=val,x+=x&(-x); }
inline int query(int x){int tot=; while(x>) tot+=c[x],x-=x&(-x); return tot; }
inline int getint()
{
int w=,q=; char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar(); if(c=='-') q=,c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
} inline void CDQ(int l,int r){
if(l>=r) return ; int mid=(l+r)>>,size=r-l+,cnt=;
for(int i=l;i<=mid;i++) b[++cnt]=a[i],b[cnt].flag=; for(int i=mid+;i<=r;i++) b[++cnt]=a[i],b[cnt].flag=;
sort(b+,b+cnt+,cmpx); //for(int i=1;i<=n;i++) c[i]=0;
for(int i=;i<=size;i++) {
if(b[i].flag==) add(b[i].y,);
else ans[b[i].t]+=query(n)-query(b[i].y);
}
for(int i=;i<=size;i++) if(b[i].flag==) add(b[i].y,-);
for(int i=size;i>=;i--) {
if(b[i].flag==) add(b[i].y,);
else ans[b[i].t]+=query(b[i].y);
}
for(int i=;i<=size;i++) if(b[i].flag==) add(b[i].y,-);
CDQ(l,mid); if(mid<r) CDQ(mid+,r);
} inline void work(){
n=getint(); m=getint(); for(int i=;i<=n;i++) { a[i].x=i; a[i].y=getint(); match[a[i].y]=i; } int cc=n,x;
for(int i=;i<=m;i++) { x=getint(); a[match[x]].t=cc--; } for(int i=;i<=n;i++) if(a[i].t==) a[i].t=cc--;
sort(a+,a+n+,cmpt); CDQ(,n);
for(int i=;i<=n;i++) Ans+=ans[i];
for(int i=n;i>n-m;i--) {
printf("%lld\n",Ans);
Ans-=ans[i];
}
} int main()
{
work();
return ;
}