套接字I/O模型之WSAEventSelect

时间:2023-02-11 09:00:07

今天我又学习了一种新的套接字I/O模型------WSAEventSelect,他与WSAAsyncSelect一样也是一种异步事件通知模型,不同的是WSAAsyncSelect是与窗口句柄关联在一起的,必须要要窗口才行,而WSAEventSelect是与事件对象关联的。这个模型的基本思路是为感兴趣的一组网络事件创建一个事件对象,再调用WSAEventSelect函数将网络事件和事件对象关联起来。当网络事件发生时,winsock使响应的事件对象受信,在事件对象上等待的函数就会立即返回。之后调用WSAEnumNetworkEvents函数便可获得到底发生了什么网络事件(FD_READ/FD_ACCEPT/FD_CLOSE等等)。

用到的函数有:

WSACreateEvent  、WSAEventSelect、WSAWaitForMultipleEvents、WSAEnumNetworkEvents

等,这里只详细介绍下WSAWaitForMultipleEvents函数

关联了事件对象后就可以用WSAWaitForMultipleEvents函数在一个或多个事件对象上等待了,当所等待的事件对象受信或者指定的时间过去了,此函数返回。

WSAWaitForMultipleEvents(

DWORD cEVents;                            //指定下面lpEvents所指的数组中事件对象句柄的个数

const WSAEVENT*  lpEvents;             //指向一个事件对象句柄的数组

BOOL fWaitAll;                     //指定是否等待所有的事件对象都变成受信状态(为TRUE:是;FALSE:否)

DWORD dwTimeout;            //指定要等待的时间,可以为WSA_INFINITE

BOOL fAlertable;                  //设为FALSE

);

函数最多可以支持WSA_MAXIMUM_WAIT_EVENTS个对象,他的大小是64.该函数会等待网络事件的发生,如果过了指定了时间(dwTimeOut)则返回WSA_WAIT_TIMEOUT,如果在规定的时间内有事件发生,则返回该事件对象的索引(注意:在程序中要想得到发生的事件的真正索引需得用返回值减去WSA_WAIT_EVENT_0),调用失败返回WSA_WAIT_FAILED.如果将参数fWaitAll设置成false如果有多个网络事件发生该函数也只返回一个事件对象索引,并且该事件是在事件句柄数组中最前面的一个.解决方法是循环调用该函数处理后面的受信事件. 该函数的第一个参数是后面事件对象句柄数组的大小,第二个是个事件对象句柄数组,最后一个设置成false即可.    一旦事件对象受信那么找到与之对应的套接字,然后调用 int WSAEnumNetWorkEvent(SOCKET s, WSAEVENT hEventHandle, LPWSANETWORKEVENTS *LPWSANETWORKEVENTS)可以查看发生的网络事件,第一个参数和相应的网络事件标识做与运算就可.第二参数是返回的错误信息。

下面给分别给出用WSAEventSelect模型写出的TCP/UDP服务器例子.

TCP例子:

 // 事件句柄和套节字句柄表
WSAEVENT eventArray[WSA_MAXIMUM_WAIT_EVENTS];
SOCKET sockArray[WSA_MAXIMUM_WAIT_EVENTS];
int nEventTotal = ; USHORT nPort = ; // 此服务器监听的端口号 // 创建监听套节字
SOCKET sListen = ::socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
sockaddr_in sin;
sin.sin_family = AF_INET;
sin.sin_port = htons(nPort);
sin.sin_addr.S_un.S_addr = INADDR_ANY;
if(::bind(sListen, (sockaddr*)&sin, sizeof(sin)) == SOCKET_ERROR)
{
printf(" Failed bind() /n");
return -;
}
::listen(sListen, ); // 创建事件对象,并关联到新的套节字
WSAEVENT event = ::WSACreateEvent();
::WSAEventSelect(sListen, event, FD_ACCEPT|FD_CLOSE);
// 添加到表中
eventArray[nEventTotal] = event;
sockArray[nEventTotal] = sListen;
nEventTotal++; // 处理网络事件
while(TRUE)
{
// 在所有事件对象上等待
int nIndex = ::WSAWaitForMultipleEvents(nEventTotal, eventArray, FALSE, WSA_INFINITE, FALSE);
// 对每个事件调用WSAWaitForMultipleEvents函数,以便确定它的状态
nIndex = nIndex - WSA_WAIT_EVENT_0;//发生的事件对象的索引,一般是句柄数组中最前面的那一个,然后再用循环依次处理后面的事件对象
for(int i=nIndex; i<nEventTotal; i++)
{
int ret;
ret = ::WSAWaitForMultipleEvents(, &eventArray[i], TRUE, , FALSE);
if(ret == WSA_WAIT_FAILED || ret == WSA_WAIT_TIMEOUT)
{
continue;
}
else
{
// 获取到来的通知消息,WSAEnumNetworkEvents函数会自动重置受信事件
WSANETWORKEVENTS event;
::WSAEnumNetworkEvents(sockArray[i], eventArray[i], &event);
if(event.lNetworkEvents & FD_ACCEPT) // 处理FD_ACCEPT通知消息
{
if(event.iErrorCode[FD_ACCEPT_BIT] == )
{
if(nEventTotal > WSA_MAXIMUM_WAIT_EVENTS)
{
printf(" Too many connections! /n");
continue;
}
SOCKET sNew = ::accept(sockArray[i], NULL, NULL);
WSAEVENT event = ::WSACreateEvent();
::WSAEventSelect(sNew, event, FD_READ|FD_CLOSE|FD_WRITE);
// 添加到表中
eventArray[nEventTotal] = event;
sockArray[nEventTotal] = sNew;
nEventTotal++;
}
}
else if(event.lNetworkEvents & FD_READ) // 处理FD_READ通知消息
{
if(event.iErrorCode[FD_READ_BIT] == )
{
char szText[];
int nRecv = ::recv(sockArray[i], szText, strlen(szText), );
if(nRecv > )
{
szText[nRecv] = '/0';
printf("接收到数据:%s /n", szText);
}
}
}
else if(event.lNetworkEvents & FD_CLOSE) // 处理FD_CLOSE通知消息
{
if(event.iErrorCode[FD_CLOSE_BIT] == )
{
::closesocket(sockArray[i]);
for(int j=i; j<nEventTotal-; j++)
{
sockArray[j] = sockArray[j+];
sockArray[j] = sockArray[j+];
}
nEventTotal--;
}
}
else if(event.lNetworkEvents & FD_WRITE) // 处理FD_WRITE通知消息
{
}
}
}
}

TCP例子就是在监听套接字上关联一个事件对象以及FD_ACCEPT|FD_CLOSE网络事件。

下面是UDP的例子:

     // 事件句柄和套节字句柄表
WSAEVENT eventArray[WSA_MAXIMUM_WAIT_EVENTS];
SOCKET sockArray[WSA_MAXIMUM_WAIT_EVENTS];
int nEventTotal = ; USHORT nPort = ; // 此服务器监听的端口号 // 创建监听套节字
SOCKET s = ::socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
sockaddr_in sin;
sin.sin_family = AF_INET;
sin.sin_port = htons(nPort);
sin.sin_addr.S_un.S_addr = INADDR_ANY;
if(::bind(s, (sockaddr*)&sin, sizeof(sin)) == SOCKET_ERROR)
{
printf(" Failed bind() /n");
return -;
} // 创建事件对象,并关联到新的套节字
WSAEVENT event = ::WSACreateEvent();
::WSAEventSelect(s, event, FD_READ|FD_CLOSE); // 添加到表中
eventArray[nEventTotal] = event;
sockArray[nEventTotal] = s;
nEventTotal++; // 处理网络事件
while(TRUE)
{
// 在所有事件对象上等待
int nIndex = ::WSAWaitForMultipleEvents(nEventTotal, eventArray, FALSE, WSA_INFINITE, FALSE);
// 对每个事件调用WSAWaitForMultipleEvents函数,以便确定它的状态
nIndex = nIndex - WSA_WAIT_EVENT_0;
for(int i=nIndex; i<nEventTotal; i++)
{
int ret;
ret = ::WSAWaitForMultipleEvents(, &eventArray[i], TRUE, , FALSE);
if(ret == WSA_WAIT_FAILED || ret == WSA_WAIT_TIMEOUT)
{
continue;
}
else
{
// 获取到来的通知消息,WSAEnumNetworkEvents函数会自动重置受信事件
WSANETWORKEVENTS event;
::WSAEnumNetworkEvents(sockArray[i], eventArray[i], &event);
if(event.lNetworkEvents & FD_READ) // 处理FD_READ通知消息
{
if(event.iErrorCode[FD_READ_BIT] == )
{
char szText[];
int nRecv = ::recv(sockArray[i], szText, strlen(szText), );
if(nRecv > )
{
szText[nRecv] = '/0';
printf("接收到数据:%s /n", szText);
}
}
} } } }

UDP例子就是在一个普通套接字上关联一个事件对象以及FD_READ网络事件。

套接字I/O模型之WSAEventSelect的更多相关文章

  1. 套接字I&sol;O模型-select

    共有6种类型套接字I/O模型.blocking(阻塞),select(选择),WSAAsyncSelect(异步选择),WSAEventSelect(事件选择),overlapped(重叠),comp ...

  2. 套接字I&sol;O模型-WSAEventSelect(转载)

    和WSAAsyncSelect类似,它也允许应用程序在一个或多个套接字上,接收以事件为基础的网络事件通知. 该模型最主要的区别是在于网络事件是由对象句柄完成的,而不是通过窗口例程完成. 事件通知 事件 ...

  3. 套接字I&sol;O模型-WSAAsyncSelect

    利用这个异步I/O模型,应用程序可在一个套接字上接收以Windows消息为基础的网络事件通知.WSAAsyncSelect和WSAEventSelect提供读写数据能力的异步通知,但它们不提供异步数据 ...

  4. Windsock套接字I&sol;O模型学习 --- 第三章

    1. WSAAsyncSelect 模型 WSAAsyncSelect 模型比较简单,是为了适应Windows的消息驱动环境而设置的,WSAAsyncSelect 函数自动把套接字设为非阻塞模式.MF ...

  5. Windsock套接字I&sol;O模型学习 --- 第一章

    1. I/O模型共有以下几种: 阻塞(blocking)模型 选择(select)模型 WSAAsyncSelect模型 WSAEventSelect模型 重叠(overlapped)模型 完成端口( ...

  6. 套接字I&sol;O模型-重叠I&sol;O

    重叠模型的基本设计原理是让应用程序使用重叠的数据结构,一次投递一个或多个WinsockI/O请求.针对那些提交的请求,在它们完成之后,应用程序可为它们提供服务.模型的总体设计以Windows重叠I/O ...

  7. 套接字I&sol;O模型-完成端口IOCP

    “完成端口”模型是迄今为止最为复杂的一种I/O模型.然而,假若一个应用程序同时需要管理为数众多的套接字,那么采用这种模型,往往可以达到最佳的系统性能!但不幸的是,该模型只适用于Windows NT和W ...

  8. Linux下套接字具体解释(三)----几种套接字I&sol;O模型

    參考: 网络编程–IO模型演示样例 几种server端IO模型的简介及实现 背景知识 堵塞和非堵塞 对于一个套接字的 I/O通信,它会涉及到两个系统对象.一个是调用这个IO的进程或者线程,还有一个就是 ...

  9. Windsock套接字I&sol;O模型学习 --- 第二章

    1. select模型 select模型主要借助于apiselect来实现,所以先介绍一下select函数 int select( int nfds, // 忽略,仅是为了与 Berkeley 套接字 ...

随机推荐

  1. python之最强王者(5)——Nunber&lpar;数字&rpar;

    1.Python Number(数字) Python Number 数据类型用于存储数值. 数据类型是不允许改变的,这就意味着如果改变 Number 数据类型的值,将重新分配内存空间. 以下实例在变量 ...

  2. JDBC获取sql server存储过程查询结果集(没有出参)

    对于一些较为复杂的统计条件查询,可以通过存储过程来实现,既可以提高效率,减少网络流量,也可以避免sql语句耦合在代码中.但是存储过程返回的结果集如何获取(类似表数据),却着实让我费劲心力. 如下: C ...

  3. MIT 6&period;824 &colon; Spring 2015 lab1 训练笔记

    源代码参见我的github: https://github.com/YaoZengzeng/MIT-6.824 Part I: Word count MapReduce操作实际上就是将一个输入文件拆分 ...

  4. 代码优先-Code First

    非常有用的两篇文章 MSDN:Code First 迁移 博客园:CodeFirst数据迁移(不丢失数据库原有数据) EF有三种开发模式:Model First,Database First 和 Co ...

  5. Ext&period;Net学习笔记19:Ext&period;Net FormPanel 简单用法

    Ext.Net学习笔记19:Ext.Net FormPanel 简单用法 FormPanel是一个常用的控件,Ext.Net中的FormPanel控件同样具有非常丰富的功能,在接下来的笔记中我们将一起 ...

  6. 10&period;使用final关键字修饰一个变量时&period;&period;&period;

    10.使用final关键字修饰一个变量时,是引用不能变,还是引用的对象不能变? 答:引用不能变,不能将引用再次指向另一个新的对象,但引用所指向的对象中的内容是可以改变的. 补充: 1.对于基本类型,f ...

  7. Spring中ApplicationContext加载机制

    详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcytp33 加载器目前有两种选择:ContextLoaderListener和Co ...

  8. Nginx的安装和设置

    Nginx是一个高性能的HTTP服务器和反向代理服务器.当一个服务器访问量太大时(比如C10k问题,Concurrent 10,000 Connection),就可以安装设置一个Nginx服务器,将客 ...

  9. LeetCode——16&period; 3Sum Closest

    一.题目链接:https://leetcode.com/problems/3sum-closest/ 二.题目大意: 给定一个数组A和一个目标值target,要求从数组A中找出3个数来,使得这三个数的 ...

  10. 获取真实ip

    public function ip() { if (getenv('HTTP_CLIENT_IP')) { $ip = getenv('HTTP_CLIENT_IP'); } elseif (get ...