SGU 438 The Glorious Karlutka River =) ★(动态+分层网络流)

时间:2023-03-10 06:47:50
SGU 438 The Glorious Karlutka River =) ★(动态+分层网络流)

【题意】有一条东西向流淌的河,宽为W,河中有N块石头,每块石头的坐标(Xi, Yi)和最大承受人数Ci已知。现在有M个游客在河的南岸,他们想穿越这条河流,但是每个人每次最远只能跳D米,每跳一次耗时1秒。问他们能否全部穿越这条河流,如果能,最少需要多长时间。(0 <= N <= 50, 0 < M <= 50, 0 <= D <= 1000, 0 < W <= 1000, 0 < Xi < 1000, 0 < Yi < W, 0 <= Ci <= 1000)

非常好的题~分层图下的动态网络流~

【思路】

因为每个节点(石头)不同时间点的状态不同,所以按时间构造分层图是必须的。每块石头在每个时间点都有一个点表示。并且由于节点容量限制,需要拆点i, i'连一条容量限制边。然后所有能从南岸跳到的石头,从源点向其各时间点处连边,容量为∞,再建一个超级源点连向源点,容量为人数。所有能跳到北岸的石头,从其各时间点处向汇点连边,容量为∞。任意两块距离小于等于D的石头,互相从t到t+1连边,容量为∞。

接下来便是怎么求最小时间。一开始我的做法是二分验证,但是超时了。。。看到Edelweiss大牛《网络流建模汇总》中用的方法是动态网络流。就是枚举时间,不断地往网络中加点表示当前时刻的石头,直到最大流等于总人数为止。这里的“动态”当然就是动态加边的意思。然后我想了想也就明白了,这道题时间最大也就可能是N+M=100,二分的优势并不明显,相反,因为它需要不断重新构造图,所以耗费了很多的时间。而动态网络流此时效率就比较高了~

【总结】1.绿字部分        2.在遇到搜索答案+网络流验证的这种题目时,如果解区间较小,则用动态网络流效率高;如果解区间很大,便使用二分查找。

#include
#include
#include
#include
#include
#include
#define MID(x,y) ((x+y)/2)
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
const int MAXV = 10005;
const int MAXE = 2100005;
const int oo = 0x3fffffff;
struct node{
int u, v, flow;
int opp;
int next;
};
struct Dinic{
node arc[MAXE];
int vn, en, head[MAXV]; //vn点个数(包括源点汇点),en边个数
int cur[MAXV]; //当前弧
int q[MAXV]; //bfs建层次图时的队列
int path[MAXE], top; //存dfs当前最短路径的栈
int dep[MAXV]; //各节点层次
void init(int n){
vn = n;
en = 0;
mem(head, -1);
}
void insert_flow(int u, int v, int flow){
arc[en].u = u;
arc[en].v = v;
arc[en].flow = flow;
arc[en].opp = en + 1;
arc[en].next = head[u];
head[u] = en ++; arc[en].u = v;
arc[en].v = u;
arc[en].flow = 0; //反向弧
arc[en].opp = en - 1;
arc[en].next = head[v];
head[v] = en ++;
}
bool bfs(int s, int t){
mem(dep, -1);
int lq = 0, rq = 1;
dep[s] = 0;
q[lq] = s;
while(lq 0){
dep[v] = dep[u] + 1;
q[rq ++] = v;
}
}
}
return false;
}
int solve(int s, int t){
int maxflow = 0;
while(bfs(s, t)){
int i, j;
for (i = 1; i arc[path[k]].flow){
minflow = arc[path[k]].flow;
mink = k;
}
for (int k = 0; k reach[55];
vector rs, rt;
void check_reach(int n, int d, int w){
for (int i = 0; i = w)
rt.push_back(i);
for (int j = i + 1; j = w){
puts("1");
return 0;
}
for (int i = 1; i n+m){
puts("IMPOSSIBLE");
}
else{
printf("%d\n", time);
}
return 0;
}