JDK源码之AQS源码剖析

时间:2023-03-08 23:32:29
JDK源码之AQS源码剖析

除特别注明外,本站所有文章均为原创,转载请注明地址

AbstractQueuedSynchronizer(AQS)是JDK中实现并发编程的核心,平时我们工作中经常用到的ReentrantLock,CountDownLatch等都是基于它来实现的。

AQS类中维护了一个双向链表(FIFO队列), 如下图所示:

JDK源码之AQS源码剖析

队列中的每个元素都用一个Node表示,我们可以看到,Node类中有几个静态常量表示的状态:

static final class Node {
/** Marker to indicate a node is waiting in shared mode */
static final Node SHARED = new Node();
/** Marker to indicate a node is waiting in exclusive mode */
static final Node EXCLUSIVE = null; /** waitStatus value to indicate thread has cancelled */
static final int CANCELLED = 1;
/** waitStatus value to indicate successor's thread needs unparking */
static final int SIGNAL = -1;
/** waitStatus value to indicate thread is waiting on condition */
static final int CONDITION = -2;
static final int PROPAGATE = -3;
volatile int waitStatus;
volatile Node prev; volatile Node next;
volatile Thread thread; Node nextWaiter; final boolean isShared() {
return nextWaiter == SHARED;
} final Node predecessor() throws NullPointerException {
Node p = prev;
if (p == null)
throw new NullPointerException();
else
return p;
} Node() {
} Node(Thread thread, Node mode) {
this.nextWaiter = mode;
this.thread = thread;
} Node(Thread thread, int waitStatus) {
this.waitStatus = waitStatus;
this.thread = thread;
}
}

此外,AQS中通过一个state的volatile变量表示同步状态。

那么AQS是如何通过队列实现锁操作的呢?

一.获取锁操作

下面的是AQS中执行获取锁的代码:

public final void acquire(int arg) {
/**通过tryAcquire获取锁,如果成功获取到锁直接终止(selfInterrupt),否则将当前线程插入队列
* 这里的Node.EXCLUSIVE表示创建一个独占模式的节点
*/
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}

然而实际上,AQS中并没有实现上面的tryAcquire(arg)方法,具体获取锁的操作需要由其子类比如ReentrantLock中的Sync实现:

protected final boolean tryAcquire(int acquires) {
//取到当前线程
final Thread current = Thread.currentThread();
//获取到state值(前文提到)
int c = getState();
//state为0标识当前没有线程占有锁
//如果队列中前面没有元素(因为是公平锁的原因,非公平锁中不进行判断,如果state为0直接获取到锁),CAS修改当前值
if (c == 0) {
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
//标识当前线程成功获取锁
setExclusiveOwnerThread(current);
return true;
}
}
//state不为0,且占有锁的线程是当前线程(这里涉及到一个可重入锁的概念)
else if (current == getExclusiveOwnerThread()) {
//增加重入次数
int nextc = c + acquires;
//如果次数值溢出,抛出异常
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
//如果锁已经被其它线程占用,获取锁失败
return false;
}

上面的代码注释中提到了可重入锁的概念,可重入锁又叫递归锁,简单来讲就是已经获取到锁的线程还可以再次获取到同一个锁,我们通常使用的syschronized操作,ReentrantLock都属于可重入锁。自旋锁则不属于可重入锁。

下面我们再看一下如果tryAcquire失败,AQS是如何处理的:

private Node addWaiter(Node mode) {
//创建一个队列的Node
Node node = new Node(Thread.currentThread(), mode);
//获取当前队列尾部
Node pred = tail;
if (pred != null) {
//CAS操作尝试插入Node到等待队列,这里只尝试一次
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
//如果添加失败,enq这里会做自旋操作,知道插入成功。
enq(node);
return node;
}
//自旋操作添加元素到队列尾部
private Node enq(final Node node) {
for (;;) {
//获取尾节点
Node t = tail;
//如果尾节点为空,说明当前队列是空,需要初始化队列
if (t == null) {
//初始化当前队列
if (compareAndSetHead(new Node()))
tail = head;
} else {
//通过CAS操作插入Node,设置Node为队列的尾节点,并返回Node
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
/**
* 如果插入的节点前面是head,尝试获取锁,
*/
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
//自旋操作
for (;;) {
//获取当前插入节点的前置节点
final Node p = node.predecessor();
//前置节点是head,尝试获取锁
if (p == head && tryAcquire(arg)) {
//设置head为当前节点,表示获取锁成功
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
//是否挂起当前线程,如果是,则挂起线程
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}

上面的代码有些复杂,这里解释一下,之前的addWaiter代码已经将node加入了等待队列,所以这里需要让节点队列中挂起,等待唤醒。队列的head节点代表的是当前占有锁的节点,首先判断插入的node的前置节点是否是head,如果是,尝试获取锁(tryAcquire),如果获取成功则将head设置为当前节点;如果获取失败需要判断是否挂起当前线程。

/**
* 判断是否可以挂起当前线程
*/
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
//ws为node前置节点的状态
int ws = pred.waitStatus;
if (ws == Node.SIGNAL)
       //如果前置节点状态为SIGNAL,当前节点可以挂起
return true;
if (ws > 0) { //通过循环跳过所有的CANCELLED节点,找到一个正常的节点,将当前节点排在它后面 //GC会将这些CANCELLED节点回收
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
//将前置节点的状态修改为SIGNAL
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
//通过LockSupport挂起线程,等待唤醒
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
return Thread.interrupted();
}

二.释放锁操作

有了获取锁的基础,再来看释放锁的源码就比较容易了,下面的代码执行的是AQS中释放锁的操作:

//释放锁的操作
public final boolean release(int arg)
//尝试释放锁,这里tryRelease同样由子类实现,如果失败直接返回false
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}

下面的代码是尝试释放锁的操作:

 protected final boolean tryRelease(int releases) {
//获取state值,释放一定值
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
//如果差是0,表示锁已经完全释放
if (c == 0) {
free = true;
//下面设置为null表示当前没有线程占用锁
setExclusiveOwnerThread(null);
}
//如果c不是0表示锁还没有完全释放,修改state值
setState(c);
return free;
}

释放锁后,还需要唤醒队列中的一个后继节点:

private void unparkSuccessor(Node node) {
//将当前节点的状态修改为0
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
//从队列里找出下一个需要唤醒的节点
//首先是直接后继
Node s = node.next;
//如果直接后继为空或者它的waitStatus大于0(已经放弃获取锁了),我们就遍历整个队列,
//获取第一个需要唤醒的节点
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
//将节点唤醒
LockSupport.unpark(s.thread);
}